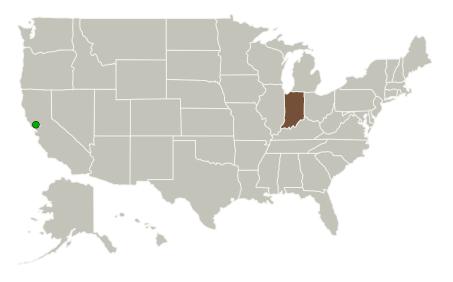
Control of an Active Sensor Skin for Extreme Terrain Mobility

Completed Technology Project (2015 - 2019)


Project Introduction

Soft systems have potential for space exploration. These systems are composed entirely of soft materials, which make them lightweight, easily deformable, and highly robust. This type of system can change the way we explore space; because these systems are highly deformable, they can be expanded or inflated on the extraterrestrial body to create much larger robots than are currently used and therefore will be able to overcome much larger obstacles. Currently, there are no generally applicable closed-loop controls being used on soft robotic systems. I propose a method for controlling a soft robotic skin based on robust system identification. I will accomplish this by characterizing and building analytical and finite element models for the sensors and actuators used in the robotic skin. These models will be tested against experimental data in a variety of ways to ensure their robustness. The models will be reduced to operate in real-time with control loops. A number of control loops will be generated and tested against environmental models to find the optimal control algorithm. This control algorithm will be tested on a physical system and will have to accomplish maneuverability tasks on terrain fields. This type of robotic system offers a new way to explore space while reducing the cost of getting the robot to a given extraterrestrial body.

Anticipated Benefits

This type of robotic system offers a new way to explore space while reducing the cost of getting the robot to a given extraterrestrial body.

Primary U.S. Work Locations and Key Partners

Control of an Active Sensor Skin for Extreme Terrain Mobility

Table of Contents

Project Introduction	1	
Anticipated Benefits		
Primary U.S. Work Locations		
and Key Partners	1	
Project Website:	2	
Organizational Responsibility		
Project Management		
Technology Maturity (TRL)	3	
Technology Areas	3	
Target Destinations	3	

Space Technology Research Grants

Control of an Active Sensor Skin for Extreme Terrain Mobility

Completed Technology Project (2015 - 2019)

Organizations Performing Work	Role	Туре	Location
Purdue University- Main Campus	Lead Organization	Academia	West Lafayette, Indiana
Ames Research Center(ARC)	Supporting Organization	NASA Center	Moffett Field, California

Primary U.S. Work Locations

Indiana

Project Website:

https://www.nasa.gov/strg#.VQb6T0jJzyE

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Purdue University-Main Campus

Responsible Program:

Space Technology Research Grants

Project Management

Program Director:

Claudia M Meyer

Program Manager:

Hung D Nguyen

Principal Investigator:

Rebecca K Kramer

Co-Investigator:

Jennifer Case

Control of an Active Sensor Skin for Extreme Terrain Mobility

Completed Technology Project (2015 - 2019)

Technology Areas

Primary:

Target Destinations

The Moon, The Sun

